Pluto
Why pluto is not a planet anymore?
Pluto has been voted off the island.
The distant, ice-covered world is no longer a true planet, according to a new definition of the term voted on by scientists today.
"Whoa! Pluto's dead," said astronomer Mike Brown, of the California Institute of Technology in Pasadena, as he watched a Webcast of the vote. "There are finally, officially, eight planets in the solar system."
In a move that's already generating controversy and will force textbooks to be rewritten, Pluto will now be dubbed a dwarf planet.
But it's no longer part of an exclusive club, since there are more than 40 of these dwarfs, including the large asteroid Ceres and 2003 UB313, nicknamed Xena—a distant object slightly larger than Pluto discovered by Brown last year.
"We know of 44" dwarf planets so far, Brown said. "We will find hundreds. It's a very huge category."
A clear majority of researchers voted for the new definition at a meeting of the International Astronomical Union (IAU) in Prague, in the Czech Republic. The IAU decides the official names of all celestial bodies.
The tough decision comes after a multiyear search for a scientific definition of the word "planet." The term never had an official meaning before.
What Is a Planet Today?
According to the new definition, a full-fledged planet is an object that orbits the sun and is large enough to have become round due to the force of its own gravity. In addition, a planet has to dominate the neighborhood around its orbit.
Pluto has been demoted because it does not dominate its neighborhood. Charon, its large "moon," is only about half the size of Pluto, while all the true planets are far larger than their moons.
In addition, bodies that dominate their neighborhoods, "sweep up" asteroids, comets, and other debris, clearing a path along their orbits. By contrast, Pluto's orbit is somewhat untidy.
Mercury
Mercury, the closest planet to the Sun, remains the most mysterious of the Solar System's inner planets. Hiding in the Sun's glare it is a difficult target for Earth bound observers. The only spacecraft to explore Mercury close-up was Mariner 10 which executed 3 flybys of Mercury in 1974 and 1975, surveying approximately 45 percent of its surface. Mariner 10 deftly manuevered to photograph part of the sunlit hemisphere during each approach, passed behind the planet, and continued to image the sun-facing side as the spacecraft receded. Its highest resolution photographs recorded features approximately a mile across. A recent reprocessing of the Mariner 10 data has resulted in this dramatic mosaic. Like the Earth's Moon, Mercury's surface shows the scars of impact cratering - the smooth vertical band and patches visible above represent regions where no image information is available.
Venus
The Brightest Planet
Venus and Earth are similar in size, mass, density, composition, and distance from the sun. There, however, is where the similarities end.
Venus is covered by a thick, rapidly spinning atmosphere, creating a scorched world with temperatures hot enough to melt lead and a surface pressure 90 times that of Earth. Because of its proximity to Earth and the way its clouds reflect sunlight, Venus appears to be the brightest planet in the sky.
Like Mercury, Venus can be seen periodically passing across the face of the sun. These transits occur in pairs, with more than a century separating each pair. Since the telescope was invented, transits have been observed in 1631, 1639; 1761, 1769; and 1874, 1882. On June 8, 2004, astronomers worldwide saw the tiny dot of Venus crawl across the sun; the second in this pair of early 21st-century transits will occur June 6, 2012.
Toxic Atmosphere
Venus's atmosphere consists mainly of carbon dioxide, with clouds of sulfuric acid droplets. Only trace amounts of water have been detected in the atmosphere. The thick atmosphere traps the sun's heat, resulting in surface temperatures over 880 degrees Fahrenheit (470 degrees Celsius). Probes that have landed on Venus have not survived more than a few hours before being destroyed by the incredibly high temperatures.
The Venusian year (orbital period) is about 225 Earth days long, while the planet's rotation period is 243 Earth days, making a Venus day about 117 Earth days long. Venus rotates retrograde (east to west) compared with Earth's prograde (west to east) rotation. Seen from Venus, the sun would rise in the west and set in the east. As Venus moves forward in its solar orbit while slowly rotating "backwards" on its axis, the cloud-level atmosphere zips around the planet in the opposite direction from the rotation every four Earth days, driven by constant hurricane-force winds. How this atmospheric "super rotation" forms and is maintained continues to be a topic of scientific investigation.
About 90 percent of the surface of Venus appears to be recently solidified basalt lava; it is thought that the planet was completely resurfaced by volcanic activity 300 million to 500 million years ago.
Sulfur compounds, possibly attributable to volcanic activity, are abundant in Venus's clouds. The corrosive chemistry and dense, moving atmosphere cause significant surface weathering and erosion. Radar images of the surface show wind streaks and sand dunes. Craters smaller than 0.9 to 1.2 miles (1.5 to 2 kilometers) across do not exist on Venus, because small meteors burn up in the dense atmosphere before they can reach the surface.
Geological Features
More than a thousand volcanoes or volcanic centers larger than 12 miles (20 kilometers) in diameter dot the surface of Venus. Volcanic flows have produced long, sinuous channels extending for hundreds of kilometers.
Venus has two large highland areas: Ishtar Terra, about the size of Australia, in the north polar region, and Aphrodite Terra, about the size of South America, straddling the equator and extending for almost 6,000 miles (10,000 kilometers). Maxwell Montes, the highest mountain on Venus and comparable to Mount Everest on Earth, is at the eastern edge of Ishtar Terra.
Venus has an iron core about 1,200 miles (3,000 kilometers) in radius. Venus has no global magnetic field; though its core iron content is similar to that of Earth, Venus rotates too slowly to generate the type of magnetic field that Earth has.
What a big post...
ReplyDeleteWe're almost arriving...